Лекция 5. Абиотические факторы среды и организмы. Адаптации организмов к абиотическим факторам: свету, температуре и влаге

Москалюк Т.А.

Список литературы: Тот же, что и в лекции 4

 

1. Свет в жизни организмов

а) Спектр света и значение разного типа излучений

б) Экологические группы растений по отношению к свету

в) Свет и биоритмы

2. Температура в жизни организмов

а) Оптимум и пессимум. Сумма эффективных температур

б) Адаптации растений к тепловому режиму

в) Пойкилотермность и гомойтермность

3. Влага в жизни организмов

4. Значение других экологических факторов для живых организмов

 

Важнейшие абиотические факторы для любого организма – свет, тепло и влага. С детства знакомо: «Солнце, воздух и вода – наши лучшие друзья!». Можно сюда добавить кислород – для животного мира, и углекислый газ – для растений. Каково же влияние каждого из них на живые организмы?

1. Свет в жизни организмов

Свет не только жизненно важный, но и лимитирующий фактор, как при минимальном уровне, так и при максимальном. Под термином свет подразумевается весь диапазон солнечного излучения, представляющий поток энергии с длинами волн от 0,05 до 3000 нм (1 нанометр = 10-6мм). Количество ее колоссально: ежеминутно Земля получает 2 кал/см2 (1,39×103дж/м2×сек). Эта величина называется солнечной постоянной. Но не вся лучистая энергия достигает земной поверхности.

а) Спектр света и значение разного типа излучений

Спектр света делится на несколько областей:

<150 нм – ионизирующая радиация – < 0,1%;

150-400 нм – ультрафиолетовая радиация (УФ) – 1-10%;

400-800 нм – видимый свет – £50%;800-1000 нм – инфракрасная радиация (ИК) – £50%.

До 19% рассеивается в атмосфере (парами и пылью, молекулами газов), около 34% отражается от атмосферы (от облаков) в космическое пространство и только 47% солнечной энергии достигает биосферы.

Ионизирующее излучение почти полностью задерживается верхними слоями атмосферы. Доля ультрафиолетовых лучей составляет около 1%. Остальное количество поступающей на землю лучистой энергии распределяется практически поровну на видимую и инфракрасную части спектра. Экологическое значение невидимых лучей изучено еще слабо.

Известно, что воздействие ионизирующего излучения связано с радиоактивностью; особенно выражено в последние десятилетия в связи с техногенными загрязнениями и катастрофами и проявляется на клеточном уровне (мутагенный эффект), влияет на обмен веществ.

Ультрафиолетовые лучи в умеренных дозах стимулируют рост и размножение клеток, способствуют синтезу биологически активных веществ, витаминов, антибиотиков и тем самым повышают устойчивость к болезням. Короткие волны этого излучения (200-320 нм) обладают канцерогенным действием – предположительно через нарушение молекулы ДНК, но большая часть их тоже поглощается озоновым слоем атмосферы. До поверхности Земли доходят в основном волны длиннее 300 нм. Они обладают высокой активностью, главным образом химической, но и их значимость неодинакова. УФ с длиной волн 300-320 нм выработке витамина D, регулирующего обмен витаминами С и Р. Этим обеспечивается нормальное развитие скелета.

Наиболее велико влияние этих витаминов на растущее поколение. Многие звери по утрам выносят из нор своих детенышей на солнце (барсуки, лисы, волки). У птиц – «солнечное купание».

Передозировка УФ вредна, особенно для деления клеток, поэтому используют УФ для дезинфекции помещений. Как защита от излишних доз УФ, при длине волны 320-330 нм в коже человека и других млекопитающих образуется пигмент меланин (загар). Экранирование поверхности организма свойственно многим рыбам, икре лягушек, грызунам в степях (мошонки, мозговые оболочки и др. органы).

Инфракрасное излучение (ИК) воспринимается всеми организмами как тепло. Воздействуя на тепловые центры нервной системы животных, эти лучи регулируют окислительные процессы и двигательные реакции в отношении источников тепла.

Все лучи, оказывающие влияние на растительные организмы, особенно на фотосинтез, называются физиологически активной радиацией (ФАР). Самое большое значение для живых организмов и функционирования всей биосферы имеет видимая часть спектра, состоящая из прямой (27%) и рассеянной (16%). Вместе они называются суммарной радиацией. Только на свету идет процесс фотосинтеза растений, обеспечивающий планету главным биологическим ресурсом – органическим веществом. Фотосинтез – главное условие возникновения и развития жизни на Земле. Свет – источник энергии, используемый пигментной системой организма, в основном хлорофиллом. На свету происходит образование хлорофилла и уже с его участием осуществляется фотосинтез. В процессе сложнейших фотохимических реакций молекулы воды (или другие молекулы с элементами, заменяющими O2) расщепляются с выделением газообразного кислорода, а углекислый газ превращается в углеводы:

6CO2 + 12 H2O С6H12O6 + 6O2 + 6H20

Как и в зоне УФ, в зоне видимых лучей волны разной длины выполняют разные функции. Зелеными растениями наиболее активно поглощаются оранжево-красные (650-680 нм) и сине-фиолетовые (400-500 нм) лучи, меньше всего – желто-зеленые (380-400 нм). Проходя через водную среду, отфильтровываются красные и синие лучи, а остающийся зеленый свет слабо поглощается хлорофиллом. Поэтому у водорослей, вырабатываются дополнительные пигменты (фикоэритрины), позволяющие им жить в море на большой глубине и используя энергию зеленого света. Следует отметить, что определенное участие в процессе фотосинтеза принимают близкие к видимой части света УФ-лучи и далекие от нее – ИК-лучи.

Зеленые растения поглощают в среднем 755 лучистой энергии, но коэффициент использования ее на фотосинтез не превышает 10 % при низкой освещенности и 2% – при высокой. Остальная переходит в тепловую, которая затрачивается на транспирацию и другие процессы.

Из внешних факторов, помимо интенсивности и спектрального состава света, большое влияние на процесс фотосинтеза оказывают температура и уровень содержания в воздухе углерода и кислорода. Минимальная температура, при которой возможен фотосинтез, отражает приспособленность вида к температурным условиям. У многих растений она совпадает с точкой замерзания тканевых жидкостей (-1, -2°С), а у криофилов фотосинтез может идти при еще более низких температурах.

Так, в окрестностях г. Магадана у кедрового стланика фотосинтез наблюдался под снежным покровом при -7°С.

Максимальная температура фотосинтеза в среднем на 10-12° ниже точки тепловой смерти. У растений южных широт она выше. При более высокой освещенности скорость фотосинтеза увеличивается, но до определенного предела – точки насыщения, а затем снижается. У тенелюбов насыщение наступает при меньшей освещенности, чем у светолюбивых растений, и в темноте переходит за нулевой уровень.

Норма содержания углекислого газа в воздухе – 0,57 мг/л, или 0,03%. При повышении концентрации СО2 до 5-10% фотосинтез усиливается, а при более высоком его повышении – снижается. Такой реакцией на колебания содержания СО2 растения поддерживают нормальный ход фотосинтеза в разнообразных условиях внешней среды. Например, в густых травостоях суточные колебания СО2 составляют 25% от средней величины.

б) Экологические группы растений по отношению к свету

Растения делятся на световые (светолюбы – гелиофиты), теневые (тенелюбы – сциофиты, гелиофобы), теневыносливые (факультативные гелифиты).

Гелиофиты – виды открытых мест (дуб монгольский, сосна могильная, береза белая, кустистые лишайники, овсяница овечья, клевер ползучий, подсолнечник и др.), в сухих местах обычно образуют разреженный и невысокий покров. При интенсивности до 13,5%, свет оказывает стимулирующее действие на рост растений, при большей – действует угнетающе. У гелиофитов высоки траты на дыхание. Характерные признаки: листья плотные, кожистые, иногда блестящие с толстой кутикулой, хвоя утолщенная, укороченные побеги, опушение, на листьях и побегов сизый восковой налет – все это защищает лист от перегрева и интенсивному испарения. Клетки эпидермиса мелкие, паренхима образована 2 и более слоями. Соотношение хлорофилла А:В составляет 5:1. Обычны темно-зеленый цвет листьев, для трав – розеточные формы.

Особая группа гелиофитов – С-4-растения и САМ-растения (пустыни, саванны). У большинства растений в результате превращений углекислоты в процессе фотосинтеза образуются две молекулы 3-фосфо-глицериновой кислоты с 3 атомами углерода каждая. В дальнейшем через ряд промежуточных реакций в мезофилле листа образуется 3-фосфо-глицерионвый альдегид, который используется как основа для синтеза углеводов. Такой путь фотосинтеза называется С3-путь (цикл Кальвина). С4-путь определяется анатомией листа. В мезофилле листьев С4-растений имеются обкладочные клетки пучков, в которых содержится много крахмала и их хлоропласты отличаются особым строением. При фиксации СО2 в листьях образуется щавелевоуксусная кислота, которая может перейти в аспарагиновую или в яблочную кислоты, накапливаемые в обкладочных клетках пучков. Они имеют по 4 атома углерода и называются четырех-углеродными карбоновыми, или С-4-дикарбоновыми кислотами. В дальнейшем эти кислоты перерабатываются в мезофилле листа с образованием углекислоты и других веществ, вновь вовлекаемых в процесс фотосинтеза. У растений с С4-путем СО2 не выделяется наружу при фотодыхании, а вновь включается в процесс, т.е. происходит полная утилизация углекислого газа. В результате световое насыщение фотосинтеза не достигается даже при самой сильной освещенности. С-4-растения могут расти даже при закрытых устьицах и очень высокой температуре (кукуруза, сорго, сахарный тростник). Обнаружено 500 видов покрытосемянных с С4-путем, который рассматривается как своеобразная адаптация к сухому режиму с высокими температурами и инсоляцией и считается самым эффективным в создании органического вещества. Это вещество больше идет на новообразование корней, чем побегов.

САМ-растения (от Crassulaceae Acid Metabolism – «кислотный метаболизм толстянковых») – процесс поглощения углекислоты отделен от фотосинтеза. Ночью устьица листьев открыты и впускают СО2, а днем закрываются. Ночью СО2 накапливается в органических кислотах, а днем включается в последовательность реакций фотосинтеза при закрытых устьицах.

Сциофиты (теневые) – не выносят сильного освещения, растут под пологом леса при сильном затенении (лесное разнотравье, папоротники, мхи, плауны, кислица, хвощи, подрост хвойных), при выставлении на простор жизненность их резко ухудшается. Представлены в основном лесными травами. Характерные признаки: нежные тонкие листья с тонкой кутикулой, обычно матовые, неопушенные, более светлого цвета, чем у растений открытых мест, побеги вытянутые. Клетки мезофилла крупные, паренхима однослойная, стенки эпидермиса тонкие, устьиц на единицу площади меньше. Соотношение хлорофилла А:В меньше, чем у светолюбов – 3:2. Факультативные гелиофиты (теневыносливые) занимают промежуточное положение между двумя группами. Легко переносят небольшое затенение. Эффективно используют боковое освещение (рассеянное), для листьев характерно мозаичное расположение. Это большинство лесных растений (клены, липы, лианы, многие травы, кустарнички).

Индекс листовой поверхности (ИЛП) – отношение площади листовой поверхности к площади соответствующего участка поверхности. Оптимальное значение ИЛП то, при котором достигается наибольшая скорость фиксации солнечной энергии в пересчете на ед. площади. Оно непостоянно, т.к. в разное время суток, сезона высота Солнца над горизонтом, интенсивность излучения, расположение листьев в кроне меняются. Если ИЛП слишком высок – самые затененные листья и растения могут понизить ассимиляционный потенциал популяции. От удаления нижних листьев в переуплотненных посадках темпы нарастания органического вещества нарастают.

Движения растений связаны с реакцией на свет: фототропизм, фотонастии . Экологическое значение – ассимилирующие органы стараются занять положение, при котором растение будет получать оптимальное количество света. У гелиофитов листья «отворачиваются» от избыточного света, а у теневыносливых видов, наоборот, «поворачиваются» к нему.

Фототропизм вызывается оттоком ростовых гормонов – ауксинов, в затененную сторону. Изменение роста с разных сторон верхушечного побега приводит к искривлению стебля. В лесу ветви растут в направлении открытого неба. Фотонастии – рост определенных клеток в листьях или стеблях под влиянием света. При сильной освещенности сильнее растут клетки верхней поверхности – эпинастия, и боковые побеги (шалфей, хризантема, фасоль) или листья в розетках (подорожник, земляника, лапчатка) принимают горизонтальное положение, в темноте вытягиваются клетки нижней поверхности – гипонастия, и побег принимает вертикальное положение. Никтинастия – изменения положения органов в течение суток с изменением интенсивности света и тургора, листья «складываются» вертикально (комнатный цветок маранта).

Свет для животных, в т.ч. и для человека, имеет в первую очередь информационное значение. Он необходим им для ориентации в пространстве. Уже у простейших организмов имеются в клетках чувствительные к свету органеллы. Пчелы своим танцем показывают собратьям путь полета к источнику пищи. Установлено, что фигуры танца (восьмерки) совпадают с определенным направлением по отношению к Солнцу. Доказана врожденная навигационная ориентация птиц, выработанная в процессе естественного отбора в течение длительной эволюции. При весенне-осенних перелетах птицы ориентируются по звездам и Солнцу. В водной среде широко распространена биолюминесценция – способность особей (рыбы, головоногие моллюски) светиться для привлечения добычи, особей противоположного пола, отпугивания врагов и т.д. Фототаксис – у животных и одноклеточных организмов – перемещение в сторону наибольшей (положительный) или наименьшей (отрицательный) освещенности для достижения наиболее подходящего местообитания (бабочки – красные и желтые цветки, ночные бабочки летят на свет в поисках партнера, гремучие змеи чувствуют ИК). Фототаксис у растений заключается лишь в перемещении хлоропластов в цитоплазме под влиянием света.

в) Свет и биоритмы

Жизнь на планете с момента возникновения осуществлялась в условиях ритмически изменяющейся среды. Суточная и сезонная смена комплекса факторов требовала приспособления к ней всего живого. В процессе эволюции выработалась четкая соизмеримость и согласованность биологических ритмов различных форм жизни с периодами циклических изменений комплекса природных условий. И на клеточном и на биосферном уровне выработаны ритмы процессов разной длительности, и все они имеют адаптивный смысл. Он заключается в том, что ритмичность проявления жизнедеятельности организмов четко согласуется с периодами наиболее благоприятных для них условий внешней среды.

Свет – главный и постоянный первично-периодический фактор, влияющий на организмы и экосистемы с момента их зарождения. В эволюции за большинством групп живых организмов синхронность их функционирования закрепилось именно за изменением светового режима. Эти изменения наиболее устойчивы в своей динамике, автономны и не подвержены другим влияниям. Выделяют биоритмы суточные, циркадианные, сезонные, цирканнуальные.

Суточные ритмы свойственны большинству видов растений и животных. Дневные, сумеречные, ночные животные, птицы, насекомые. Сигнальным фактором начала и прекращения активности выступает режим освещения. У многих видов отмечается смена суточных ритмов в течение сезона. У песчанок (рис. 1) в середине лета наблюдается 2 пика активности в течение суток, а ранней весной и поздней осенью – по одному.

 

Циркадианные (циркадные) ритмы – проявление суточного ритма, характерного для вида в естественных условиях, в условиях неизменной освещенности. В основе их лежат наследственно закрепленные циклы эндогенных процессов. Характерная особенность – некоторое несовпадение их периода с полными астрономическими сутками. Высказана гипотеза о связи механизма суточной физиологической периодики (циркадных ритмов) со структурой генетического аппарата.

Эксперимент О. Декандоля, начало 19 в. – мимоза на ночь листья складывает, на день распускает – даже в полной темноте. У птиц и млекопитающих известны суточные циклы эндокринных желез и ферментных систем. У арктических животных суточный ритм сохраняется в течение всего полярного дня, а у других видов может нарушаться – стерлядь днем держится в придонных слоях, ночью плавает везде, но если круглые сутки светло, то она так и держится дна, а если темно – она все это время активна.

Абсолютное сохранение независимых от среды ритмов биологически невыгодно, так же как и абсолютное «подчинение» активности организмов часто меняющимся условиям. Оптимально сочетание устойчивых эндогенных ритмов с корректирующим влиянием внешних факторов.

Сезонные ритмы. Физиологические и биологические процессы у растений (процессы репродукции, запасания питательных веществ перед зимним покоем, осенняя окраска листьев, закладка почек, и др.) и большинства видов животных (брачный период, размножение, линька, спячка, миграции) проявляются сезонно, с учетом смены времен года. Конкретные погодные условия только модифицируют протекание этих циклов. Природа этих циклов, как и суточных, имеет эволюционный характер.

Цирканнуальные (цирканные) ритмы – это эндогенные биологические циклы с окологодичной периодичностью. Проявление сложно, но четко выражено влияние режима освещения. В частности на прохождении онтогенетических фаз у насекомых сказывается разная продолжительность дня.

ПРИМЕР. У шелковичного червя Bombyx mori из яиц, отложенных в короткие весенние дни, выводятся самки, яйца которых не впадают в диапаузу, а самки, выведенные из яиц длинного летнего дня, откладывают диапаузирующие яйца, обеспечивая таким образом появление весеннего поколения.

Собственный ход цирканнуальных ритмов чаще бывает несколько меньше астрономического года.

Периоды линьки у птиц в клетках составляют не 12, а 9,4-9,7 м-цев. У сусликов в неволе ритмы спячки и динамики массы тела составляют около 300 сут., а циклы активного поведения, половые циклы, в отличие от суточных фаз, не синхронизировались фотопериодом. Ослепленные бурундуки, содержащиеся в течение 6 лет при постоянной температуре и равномерном чередовании света и темноты(12С:12Т), демонстрировали динамику массы тела, двигательную активность, потребление пищи с периодом 320-340 суток.

Таким образом, для растений свет необходим в первую очередь, как ресурс, для фотосинтеза и транспирации. Для животных – для информационного обеспечения. И для тех и других – как эволюционный фактор-синхронизатор биологических ритмов.

2. Температура в жизни организмов

Главным источником тепла на Земле является солнечное излучение, поэтому свет и тепло выступают сопряжено. Тепло один из наиболее важных факторов, определяющих существование развитие и распространение организмов по Земному шару. При этом важно не только количество тепла, но и распределение его в течение суток, вегетационного сезона, года. Приход тепла к разным участкам планеты, естественно, неодинаков, с удалением от экватора не только снижается поступление его, но и увеличивается амплитуда сезонных и суточных колебаний.

Температурные пределы, в которых может протекать жизнь, составляет всего 300°, от -200°С до +100°С, но для большинства организмов и физиологических процессов этот диапазон еще уже – от 39° в море (-3,3 – +35,6°С) до 125° на суше (-70 – +55°С). Нормальное строение и работа белка осуществляются при 0-+50°С.

Значение температуры заключается в том, что она изменяет скорость протекания физико-химических реакций в клетках, а это отражается на росте, развитии, размножении, поведении и во многом определяет географическое распространение растений и животных. Согласно правилу Вант-Гоффа скорость химических реакций возрастает в 2-3 раза каждый раз при повышении температуры на 10°С, а по достижении оптимальной – начинает снижаться. Верхний (верхний биологический нуль) и нижний пределы называются, соответственно, верхней и нижней летальной температурой. При выходе изменений температуры за пределы выносливости организмов происходит их массовая гибель, т.к. происходит свертывание белка и разрушение ферментов. Так, с переходом через 50-60°С, как правило, створаживается простокваша, сваривается белок яйца, погибает камбий у растений.

Отбор и расселение видов в зонах с разной теплообеспеченностью шел в течение многих тысячелетий в направлении максимального выживания, как в условиях минимальных температур, так и в условиях максимальных. По отношению к температуре все организмы делятся на криофилы (холодолюбивые) и термофилы (теплолюбивые).

Криофилы не выносят высоких температур и могут сохранять активность клеток при -8-10°С (бактерии, грибы, моллюски, членистоногие, черви и др.). Они населяют холодные и умеренные зоны земных полушарий.

ПРИМЕР. В условиях Крайнего Севера, в Якутии деревья и кустарники не вымерзают при - 70°С. «Рекордсмен» – лиственница даурская. За полярным кругом при такой же температуре выживают лишайники, некоторые виды водорослей, ногохвостки, в Антарктиде – пингвины. Семена и споры многих растений, нематоды, коловратки переносят замораживание до температуры близкой к абсолютному нулю (271°С). Животные больших глубин переносят температуры около 0°С.

Термофилы приспособились к условиям высоких температур, обитают преимущественно в тропических районах Земли. Среди них также преобладают беспозвоночные (моллюски, членистоногие, черви и др.), многие из которых живут только в тропиках.

ПРИМЕР. Пресмыкающиеся, некоторые виды жуков, бабочек выдерживают температуру до 45-50°С. В пустыне Палестины максимальная активность у кузнечиков наблюдается при 40-градусной жаре. В горячих источниках Калифорнии при температуре 52°С обитает рыба - пятнистый ципринодон, а на Камчатке при 75-80°С живут сине-зеленые водоросли. Верблюжья колючка, кактусы переносят нагревание воздуха до 70°С.

Многие растения в тропиках не переносят низких температур и погибают при 0°С, хотя ткани их еще не заморожены. Причиной их гибели обычно является нарушение обмена веществ, которое приводит к образованию в растениях чуждых и даже вредных им продуктов, вызывающих отравление.

а) Оптимум и пессимум. Сумма эффективных температур

Оптимальные условия те, при которых все физиологические процессы в организме или экосистемах идут с максимальной эффективностью. Для большинства видов температурный оптимум находится в пределах 20-25°С, несколько сдвигаясь в ту или другую стороны: в сухих тропиках он выше – 25-28°С, в умеренных и холодных зонах ниже – 10-20°С. В ходе эволюции, приспосабливаясь не только к периодическим изменениям температуры, но и к разным по теплообеспеченности районам, растения и животные выработали в себе различную потребность к теплу в разные периоды жизни. У каждого вида свой оптимальный диапазон температур, причем и для разных процессов (роста, цветения, плодоношения и др.) имеются тоже «свои» значения оптимумов.

Известно, что физиологические процессы в тканях растений начинаются при температуре +5°С и активизируются при +10°С и выше. В приморских лесах развитие весенних видов особенно четко связаны со среднесуточными температурами от -5°С до +5°С. За день-два до перехода температур через -5°С под лесной подстилкой начинается развитие весенника звездчатого и адониса амурского, а во время перехода через 0°С - появляются первые цветущие особи. И уже при среднесуточной температуре +5°С цветут оба вида. Из-за недостатка тепла ни адонис, ни весенник не образуют сплошного покрова, растут одиночно, реже - по нескольку особей вместе. Чуть-чуть позже них - с разницей в 1-3 дня, трогаются в рост и зацветают ветреницы.

Температуры, «лежащие» между летальными и оптимальными относятся к пессимальным. В зоне пессимумов все жизненные процессы идут очень слабо и очень медленно.

Температуры, при которых происходят активные физиологические процессы, называются эффективными , значения их не выходят за пределы летальных температур. Суммы эффективных температур (ЭТ), или сумма тепла, величина постоянная для каждого вида. Ее рассчитывают по формуле:

ЭТ = (t – t1) × n,

Где t – температура окружающей среды (фактическая), t1 – температура нижнего порога развития, часто 10°С, n – продолжительность развития в днях (часах).

Выявлено, что каждая фаза развития растений и эктотермных животных наступает при определенном значении этого показателя, при условии, что и другие факторы в оптимуме. Так, цветение мать-и-мачехи наступает при сумме температур 77°С, земляники – при 500°С. Сумма эффективных температур (ЭТ) для всего жизненного цикла позволяет выявить потенциальный географический ареал любого вида, а также сделать ретроспективный анализ распространения видов в прошлом. Например, северный предел древесной растительности, в частности лиственницы Каяндера, совпадает с июльской изотермой +12°С и суммой ЭТ выше 10°С – 600°. Для ранних с/х культур сумма ЭТ составляет 750°, этого вполне достаточно для выращивания ранних сортов картофеля даже в Магаданской области. А для кедра корейского сумма ЭТ составляет 2200°, пихты цельнолистной – около 2600°, поэтому и растут оба вида в Приморье, и пихта (Abies holophylla) – только на юге края.

б) Адаптации растений к тепловому режиму

Растения не имеют постоянной температуры тела и, в отличие от животных, не могут уйти в укрытие от жары или холода. К вредному воздействию неблагоприятных температур они приспосабливаются с помощью анатомо-морфологических и физиологических механизмов. Анатомо-морфологические адаптации растений к холоду: минимизация размеров при сохранении больших размеров репродуктивных органов (ива полярная, рододендроны камчатский и Адамса, березка тощая (арктическая), филлодоце голубая, многочисленные арктические растения); формирование укороченных побегов-брахибластов (лиственницы, ивы); неопадание отмерших листьев в кронах (дуб монгольский, ива чукотская); опушение побегов и листьев (береза шерстистая, лапчатка земляниколистная, прострелы, лиственница курильская), наличие воскового налета; оплетание сосущими корнями лиственницы теплых бугорков (камни, валеж) на почвах с мерзлотой; геофилизация – погружение в субстрат нижней части растений.

Некоторые из указанных адаптаций свойственны растениям и по отношению к максимальным температурам – войлочное опушение у лоха узколистного, акации песчаной; утолщение покровной ткани и восковой налет на листьях (пониженная интенсивность транспирации); вертикальная ориентация листьев; наличие защитного пробкового слоя (изоляция камбия от перегрева). Адаптации, свойственные только термофилам - своеобразный морфологический тип растений с частично или полностью редуцированным листовым аппаратом (саксаул – Haloxylon aphyllum, разные молочаи (Euphorbia), не говоря о кактусах), очень толстый слой кутикулы (суккуленты, кактусы). В холодных районах растут, в основном многолетники, в жарких – много однолетников.

Физиологические (биохимические) адаптации: снижение интенсивности транспирации, уменьшающее теплоотдачу; накопление в клетках сахаров и других веществ, увеличивающих концентрацию клеточного сока; накопление в клетках антоцианов, обеспечивающих в холодное время сезона красный цвет и оттенки фотосинтезирующего аппарата (побеги шиповника и чозении, листья копытня, джефферсонии, адониса, ветрениц и тополя; цветки у ивы Крылова); выделение веществ, зачерняющих поверхность вокруг стволов (чозения); и др. Физиологические адаптации проявляются, прежде всего, в изменении физико-химического состава веществ в клетках и тканях.

1) Увеличение запаса пластических веществ повышает концентрацию и осмотическое давление клеточного сока, вода «связывается» в коллоиды и потому плохо испаряется и замерзает, она характеризуется большой плотностью и не может быть растворителем; в таком виде вода входит в состав макромолекул белков и нуклеиновых кислот.

2) Отложение в клетках запасных питательных веществ в виде высокоорганических соединений – масла, жира, гликогена. Они вытесняют из вакуолей воду и делают клетки более устойчивыми к замерзанию. В период подготовки к зиме происходит изменение запасных веществ: крахмал вновь превращается в сахар, но иного строения, чем летом – кроме сахарозы и фруктозы в коре хвойных деревьев появляется стахиоза и рафиноза.

3) Перераспределение в тканях энергетических веществ. У растений к зиме крахмал откладывается в корнях, масла и сахара – в надземных органах. В древесине масла откладываются во внутренних слоях, что повышает их устойчивость к сильным морозам.

О том, как работают механизмы адаптации на клеточном уровне, можно судить по отношению растений к критическим (пессимальным) температурам.

Отношение к низким температурам характеризуются:

Холодостойкостью – длительно переносят низкие положительные температуры – от +1 до +10°С. Нехолодостойки выходцы из тропиков – хлопчатник, рис, баклажаны.

Морозостойкостью – не гибнут при температуре от -1 до -7°С, хорошо переносят низкие температуры ниже 25°С. Все древесно-кустарниковые виды умеренных зон. У одних и тех же растений холодоустойчивость разных органов и в разное время года неодинакова (рис. 2). Наиболее уязвимы молодые ткани и регенеративные органы.

Льдоустойчивостью – переносят кратковременное образование льда между клетках, после оттаивания продолжают жить.

Отношение к высоким температурам характеризуется:

Жаровыносливостью – растения солнечных сухих местообитаний, способные переносить кратковременное (до получаса) повышение температуры до +60°С без повреждения тканей. Самые жаровыносливые – лишайники.

Жаростойкостью – низшие растения, живущие в термальных источниках (сине-зеленые водоросли, бактерии) стой до +90°С.

Жароустойчивость растений зависит от географического положения, сезона года, положения в рельефе. Более устойчивы к жаре южные виды. Виды умеренных и арктических зон более жароустойчивы зимой, жарких стран (средиземноморские виды) – летом. Горноальпийские виды менее жароустойчивы, чем растущие в нижележащих поясах.

в) Пойкилотермность и гомойтермность

У животных реакции на разный тепловой режим жизнеобеспечения не менее разнообразны, чем у растений. И все они направлены на регулирование уровня теплопередачи. В отличие от растений для животных характерны два типа теплообмена: пойкилотермность (poikilos – разнообразный) и гомойтермность (homois – одинаковый).

К пойкилотермным (эктотермным, устаревшее – холоднокровным) относятся все беспозвоночные, рыбы, рептилии и амфибии. Они лишены способности поддерживать постоянную температуру тела. Для пойкилотермных организмов типична низкая интенсивность обмена веществ и почти полное отсутствие механизмов теплорегуляции. В тропических странах они встречаются чаще, чем в других.

Терморегуляция осуществляется за счет особой структуры и цвета покровов, специфики поведения – отыскивают наиболее подходящие местообитания (змеи выползают на скальные выходы, ящерицы – на стволы деревьев с солнечной стороны, лягушки – на теплые камни, листья), усилением мускульной работы (в полете – на 15-20°С температуры выше окружающей среды; у шмелей на Кавказе в горах – до 38-40°С при 4-8°С воздуха); за счет общественной жизни (муравейники, термитники, ульи); разным содержанием влаги в теле и разной интенсивностью испарения влаги с поверхности тела (эти наиболее безразличны к любым изменениям температуры воздуха); и др. Устойчивость к низким температурам обеспечивается накоплением жиров, гликогена, некоторых солей. Неблагоприятные условия пойкилотермные животные переживают в неактивном состоянии – анабиозе.

Гомойтермные (эндотермные, теплокровные) – животные с высоким уровнем обменных процессов – птицы и млекопитающие, обеспечивающими поддержание постоянной температуры тела даже при значительных колебаниях температуры внешней среды. Тепло выделяется при биохимических реакциях внутри организма. Чем ниже температура среды, тем больше потери тепла и тем интенсивнее идут обменные процессы, повышается продуцирование тепла, идущего на поддержание постоянной температуры тела. Аналогичная закономерность и при повышении температуры. Но эта закономерность прослеживается лишь до определенного предела. Ресурсы организма не беспредельны. При длительном перегреве или переохлаждении он погибает.

У гомойтермных животных различают химическую и физическую терморегуляции. Химическая проявляется в продуцировании тепла, физическая – в его распределении по телу и отдаче. У животных перед наступлением холодов возрастает в тканях печени содержание гликогена, в почках – аскорбиновой кислоты. Наблюдается накопление жиров под кожей и вблизи жизненно важных органов – сердца, спинного мозга. Жиры откладываются в особой бурой жировой ткани, и при клеточном дыхании вся энергия идет не на синтез АТФ, а рассеивается по телу в виде тепла.

 

На основе физиологических процессов осуществляется терморегуляция в пределах тела: в конечностях вены и артерии подходят близко друг к другу («чудесная сеть») и артерии отдают тепло венам, возвращая его телу. В результате конечности остаются более холодными по сравнению с телом. В жару поддерживать температуру тела на постоянном уровне позволяет потоотделение, учащенное дыхание (собаки, птицы).

У экологически близких млекопитающих в холодных климатических зонах, согласно правилу Бергмана, закономерно увеличиваются размеры тела и вес внутренних органов, имеющих отношение к регулированию процессов обмена (сердце, почки, печень). Согласно правилу Аллена, в холодных зонах относительно размера тела сокращаются площади поверхностей выступающих органов (уши, носы, хвосты) по сравнению с млекопитающими более теплых зон. Правило Аллена наглядно демонстрируют размеры ушей у песца (Арктика), европейской лисы и африканской лисы-фенека (рис. 3).

 

 

 

Снижению теплопотерь способствуют опушение (как и у растений), оперение, шерстный покров, жировые отложения, темный окрас покрова (правило Глогера).

Промежуточное положение между пойкилотермными и гомойтермными организмами занимают гетеротермные (суслики, ежи, летучие мыши, медведи). В активном состоянии у этих животных поддерживается постоянная относительно высокая температура тела. В зимнее время они впадают в спячку или глубокий сон, и температура тела у них в это время мало отличается от внешней. Уровень обмена веществ снижается (Когда спишь – есть не хочется!).

Температура и влажность являются ведущими климатическими факторами и тесно взаимосвязаны между собой. При неизменном количестве воды в воздухе относительная влажность увеличивается, когда температура падает. Если воздух охлаждается до температуры ниже точки водонасыщения (100%), происходит конденсация и выпадают осадки.

3. Влага в жизни организмов

Вода – основа протоплазмы клеток, тканей, растительных и животных соков. Только при наличии воды в организме протекают процессы фотосинтеза, терморегуляции, обменных процессов. Наиболее высоко содержание воды в периоды активной жизнедеятельности (табл. 1) и в молодом возрасте.

Таблица 1

Содержание воды в различных организмах, % от массы тела

(по Б.С. Кубанцевой, 1973)

Растения Содержание воды Животные Содержание воды

Водоросли

Морковь корни)

Разнотравье

Листья деревьев

Стволы деревьев

Картофель (клубни)

96-98

87-91

85-86

79-82

40-65

74-80

Губки

Моллюски

Насекомые

Ланцетник

Земноводные

Млекопитающие(мышечные ткани)

84

80-92

46-92

87

до 93

68-83

Но и в состоянии покоя растения не теряют влагу полностью. В сухих лишайниках содержится до 5-7% воды, в зерновках злаков – 12-14%. Независимо от климата и почвенных условий в течение года всегда можно выделить такие периоды в развитии растений, за исключение растений влажных тропиков, когда они испытывают дефицит влаги. При остальных благоприятных условиях он сильно сказывается на росте и развитии растений, обусловливает их низкорослость и бесплодие.

В процессе эволюции у растений и животных выработался многочисленные сложные приспособления, позволяющие поддерживать водный баланс и обеспечивать экономное расходование воды. Растения пустынь и степей приспособились к острому дефициту влаги, болотные и влажно-тропические растения – к избытку, а лесным видам необходима высокая влажность воздуха и умеренная влажность почв. Как и в отношении остальных факторов, эти приспособления-адаптации группируются в анатомо-морфологические, физиологические и поведенческие.

Источниками влаги для растений служат запасы ее в почве и атмосфере (осадки, туманы, конденсаты), для наземных животных – вода в водоемах, водяные пары в атмосфере и сочная пища. При анализе влияния влаги на живые организмы важно учитывать сезонное распределение и температурный режим среды обитания. Разные комбинации содержания воды и температуры в среде обитания создают множество разных ситуаций, благоприятных и наоборот. Соотношение температуры и влажности характеризует климат конкретной территории и важно для выбора популяцией вида стации обитания.

Влажный воздух обладает хорошей теплопроводностью. При высокой влажности в холодном воздухе у гомотермных животных усиливаются процессы метаболизма, а у пойкилотермных животных и растений они замедляются. В сухом воздухе при низкой температуре охлаждение происходит медленнее, а в сухом и жарком воздухе активизируются процессы терморегуляции, усиливается испарение с поверхности. Во влажном и жарком воздухе испарения с поверхности резко падает и высока вероятность нагрева организма до температуры воздуха (перегрев). Наиболее благоприятные условия складываются в диапазоне температур 17-23°С и в диапазоне относительной влажности воздуха 85-100%.

По отношению к влажности различают эвригигробионтные и стеногигробионтные организмы. Первые живут в широком диапазоне содержания влаги, а для вторых она должна быть либо высокой, либо низкой, либо промежуточной между первыми двумя. Это относится и к растениям и к животным, несмотря на то, что вторые имеют возможность отыскивать места с оптимальной влажностью. И те и другие могут легко переносить дефицит влаги (копытные, верблюд, варан, пищуха-сеноставка, из растений: лишайники, суккуленты, многие злаки, полыни, и т.д.), а могут и вовсе не выносить сухости (земноводные, пресмыкающиеся, ластоногие, из растений: все плавающие растения, сфагновые мхи, многие папоротники, из высших: недотрога обыкновенная – быстро теряет тургор, калужницы, адокса мускусная, и др.).

По способу регулирования водного режима своего тела растения делятся на пойкилогидрические (пойкилогидридные) и гомойгидрические (гомогидридные). У первых содержание воды в тканях непостоянно и зависит от влагообеспеченности биотопа (наземные водоросли, лишайники (!), мхи, тропические папоротники, из высших растений – пустынная осока (C. physodes). У них нет анатомических приспособлений, защищающих от испарения. У большинства отсутствуют устьица и транспирация равна испарению. Тела у них высыхают до воздушно-сухого состояния, а во влажную погоду напитываются водой и зеленеют. У вторых (большинство покрытосеменных растений) содержание воды более-менее постоянно при любой погоде – они регулируют испарение путем закрывания устьиц и складывания листьев, в оболочках клеток у них содержатся водонепроницаемые вещества (кутин, суберин).

По отношению к водному режиму экотопа ( экотоп – совокупность факторов местообитания ) растения делятся на влаголюбивые (гигрофиты), сухолюбивые (ксерофиты) и умеренно влаголюбивые (мезофиты).

Гигрофиты (калужницы, болотные осоки, злаки, папоротник оноклея чувствительная, белозор, росянка, недотрога обыкновенная, все бальзамины, аир, белокрыльник, рдесты, рогоз, сфагны, рис, кислица) обитают в очень влажных местах и обладают низкой засухоустойчивостью. У них всегда открыты устьица и процесс транспирации регулируется слабо. Устьца располагаются с обеих сторон, немногочисленны. Листья крупные тонкие. Потеря 15-20% запаса воды для них невосполнима. Они растут или в глубокой тени по пологом влажного леса (теневые гигрофиты) или на открытом месте на переувлажненных или покрытых водой почвах (световые гигрофиты). Для них характерны толстые слаборазветвленные корни с минимальным количеством сосущих корней. В органах обилие воздушных полостей (аэренхима) для аэрации тканей.

Мезофиты – способны непродолжительно переносить незначительные почвенную и атмосферную засухи. К ним относятся луговые и многие лесные травы (неморальные), лиственные и хвойные деревья лесов умеренной полосы, многие кустарники, большинство сельскохозяйственных культур. Устьица расположены на нижней стороне листьев. Листья большие с умеренно развитыми тканями. Благодаря регулированию устьичной транспирации, характеризуются большой пластичностью по отношению к условиям увлажнения. Могут расти вместе с гигрофитами и с ксерофитами, приобретая черты близкие той или другой группе. Для них типичны хорошо развитые корневые системы смешанного типа, с густой сетью сосущих корней.

Ксерофиты – растения сухого и жаркого климата и местообитаний – пустынь, степей, саванн, в лесной зоне – растения сухих сосняков и широколиственных лесов на крутых южных склонах. Они не выносят переувлажнения, но хорошо приспособились к длительным засухам. Для них характерны два способа преодоления засухи: активное регулирование водного баланса и способность выносить сильное иссушение тканей.

У ксерофитов очень мощные корневые системы – по массе в 9-10 раз превышают надземные органы. Они или экстенсивного типа (кустарники) – длинные (10-15 м), но мало разветвленные; достигают уровня грунтовых, или интенсивного (злаки) – охватывают небольшой объем почвы (до 1,5 м глубины) и густо ветвятся, максимально усваивая влагу. Анатомические особенности - хорошо развита водопроводящая система, сеть жилок на листовых пластинках очень густая, позволяет быстро пополнять запасы воды, израсходованной на транспирацию. Основные черты ксерофитности, некоторые из них присущи также гелиофитам и термофилам и описаны выше:

1. Мелкие, узкие, сильно редуцированные листовые пластинки – способствуют снижению транспирации (в Приморье – селагинелла, плауны).

2. Уменьшение (сбрасывание) листовой поверхности в наиболее сухие периоды вегетации (летний листопад).

3. Защита листьев от больших потерь влаги на транспирацию благодаря развитию мощных покровных тканей, наличие разных выростов, волосков, железок на эпидермисе («войлочное опушение» – у эдельвейсов).

4. Усиленное развитие мех. тканей листа, предотвращающих обвисание листьев при потере тургора.

Виды с наиболее выраженными перечисленными свойствами представлены склерофитами (от греч. «склеро» – твердый, жесткий; саксаул, чертополоъх, полыни, статице, ковыли, молочаи и др.). Устьиц много, но они при недостатке воды закрываются. Растения могут полностью терять все листья и до 15% воды. В клетках склерофитов преобладает связанная вода.

Другая большая группа ксерофитов – суккуленты (от лат. «суккулентус» - сочный, жирный), растут в жарком сухом климате там, где проходят кратковременные, но сильные обильные ливни. Во время дождей накапливают в листьях (алоэ, агавы, молодило) или стеблях (молочаи, кактус опунция) большие запасы воды, а потом медленно ее расходуют. Устьиц мало, они мелкие, в углублениях, и открываются только ночью.

В северных широтах и высоко в горах аналоги ксерофитам – психрофиты (влажные и холодные места – мхи, в некотором роде багульник болотный, андромеда) и криофиты (сухие и холодные места – лишайники, вересковые кустарнички, в т.ч. кассиопа четырехгранная, арктоус альпийский, и даже брусника). Они испытывают недостаток влаги из-за физиологической недоступности почвенной влаги, обусловленной низкими температурами почв.

Тропофиты – в жарких районах с чередованием засушливого и влажного сезонов (баобабы в Африке), растения сбрасывают листву и пребывают в состоянии глубокого покоя летом.

Эуксерофиты – растения степей с розеточной и полурозеточной ЖФ (Saxifraga omolojensis, S. nivalis, Arenaria sp. – кошачья лапка) и сильным опушением листьев. В сухих дубняках в верхней части южных склонов такая экобиоморфа характерна для полыни побегоносной (Artemisia stolonifera). Стипоксерофиты – тоже растения степных экосистем («стипо» – степь), узколистные, дерновинные злаки (вейники, типчаки, тонконог, мискантус), из с/х культур – кукуруза. Они слабо транспирируют, в сухую погоду листья сворачиваются в трубочку.

Эфемеры (весенние и осенние) – однолетние растения (незабудка песчаная, вероника весенняя, маки альпийские, в Приморье на горе Ольховая – офелия), и эфемероиды – многолетние растения (крокусы, тюльпаны, прострелы), тоже обитатели засушливых местообитаний. Они избегают летних засух в связи с особенностями жизненных циклов. В короткие сроки – за 15-30 дней, растения успевают пройти весь жизненный цикл и уйти на покой до следующей весны.

Эфемерами могут быть и животные – в Приморье бабочки-поденки, в Африке рыбы, обитающие в небольшие водоемах – африканские нотобранхи.

Среди животных тоже можно выделить три экологических группы, но из-за подвижного образа жизни они выражены неявно.

Гигрофилы – не могут накапливать и долго удерживать в тканях запасы воды – многие членистоногие: мокрицы, ногохвостки, комары, белоножки (гнус), а также наземные моллюски и амфибии. Нуждаются в постоянно выокой влажности воздуха. Мезофиллы – животные, обитающие в условиях умеренной влажности. Их большинство, как среди насекомых, так и среди млекопитающих. Ксерофилы – сухолюбы и термофилы одновременно, не переносят высокую влажность воздуха. У них хорошо развиты механизмы водообмена и функции удержания воды в теле. У пресмыкающихся отсутствуют кожные железы, из тела выделяется мочевая кислота, а не мочевина (для растворения мочевины нужно больше воды). У черепахи вода запасается в мочевом пузыре, грызуны воду получают с пищей. Верблюд, тушканчики, курдючные овцы воду получает в результате окисления жиров, при котором образуется метаболическая вода. В таблице 2 приведены примеры приспособления живых существ к жизни в пустыне.

Таблица 2

Адаптации к засушливым условиям у растений и животных (по Н. Грину и др., 1993)

Толстый стебель с большим от­ношением объема к поверхности Животные прячутся в норах
Адаптации Примеры организмов
Уменьшение потери воды
Листья превращены в иглы или колючки Cactасеае (кактусы), Euphorbiасеае (молочаи), хвойные деревья
Погруженные устьица Рinus, Ammophila
Листья свернуты в цилиндр Ammophila, Ledum palustrum, Rhododendron sichotensis
Сасtасеае, Euphorbiасеае (суккуленты)
Опушенные листья Многие альпийские растения
Сбрасывание листьев при засухе Fouguieria splendens толстянковые
Устьица открыты ночью и закры­ты днем Crassulaceae (толстянковые)
Эффективная фиксация СО2 ночью при не полностью открытых устьицах С-4-растения, например, Zea mays
Выделение азота в виде мочевой кислоты Насекомые, птицы и некоторые рептилии
Удлиненная петля Генле в почках Пустынные млекопитающие, например, верблюд, пустынная крыса
Ткани выносливы к высоким температурам из-за уменьшения потоотделения или транспирации Многие пустынные растения, верблюд
Многие мелкие пустынные млекопитающие, например, пустынная крыса
Дыхательные отверстия прикрыты клапанами Многие насекомые
Увеличение поглощения воды
Обширная поверхностная корневая система и глубоко проникающие корни Некоторые Сасtасеае, например, Opuntia и Euphorbiaceae; Дуб монгольский, Леспедеца
Длинные корни Многие альпийские растения, например, эдельвейс (Leontupodium alpinum)
Прорытие ходов к воде Термиты
Запасание воды
В слизистых клетках и в клеточных стенках Сасtасеае и Euphorbiaceae
Вспециализированном мочевом пузыре Пустыннаялягушка
В виде жира (вода – продукт окисления жира) Пустынная крыса
Физиологическая устойчивость к потере воды
При видимом обезвоживании сохраняется жизнеспособность Некоторые эпифитные папоротники и плауны, многие мохообразные и лишайники, Сагех physoides
Потеря значительной части массы тела и быстрое ее восстановление при наличии доступной воды Lumbricus terrestris (теряет до 70% массы), верблюд (теряет до 30%)
Уклонение от проблемы
Переживают неблагоприятный период в виде семян Эшшольция калифорнийская, Марьянник розовый
Переживают неблагоприятный период в виде луковиц и клубней Некоторые лилии, Хохлатки
Распространение семян в расчете на то, что некоторые из них попадут в благоприятные условия Различные растения
Поведенческие реакции избегания Почвенные организмы, например, дождевые черви, клещи
Летняя спячка в слизистом коконе Дождевые черви, двоякодышащие рыбы.

4. Значение других экологических факторов для живых организмов

Атмосфера. Воздух – источник кислорода для дыхания и углекислого газа для фотосинтеза. Он защищает биосферу от вредных космических излучений и способствует сохранению тепла на Земле. С атмосферой связаны биогеохимические циклы, включающие газообразные компоненты: С, О, N, H2O. Ветер играет важную роль в расселении видов, распространяя семена и споры, способствуя опылению растений.

Рельеф (топографический, или орографический, фактор) – очень важный фактор среды, хотя и косвеннодействующий. Он влияет на перераспределение света, тепла и влаги. В зависимости от высоты н.у.м., экспозиции склонов, расположения их по отношению к морю происходит смена условий местообитания, влияя на размещение растительности и животного населения. С рельефом связана высотная зональнасть

На Дальнем Востоке горный рельеф - один из ведущих природных факторов. Он служит климатическим барьером между приморскими и континентальными районами.

Прочие физические факторы среды: атмосферное электричество, огонь, шум, магнитное поле Земли, ионизирующие излучения. Из перечисленных факторов все большее значение приобретают огонь (лесные пожары), шум (транспортный, строительный, промышленный), радиоактивное излучение. Все они обусловлены увеличением влияния атропогенного фактора.

Активные, пассивные и избегающие адаптации организмов к неблагоприятным факторам среды

При всем мноогобразии форм и механизмов адаптаций живых организмов к воздействию неблагоприятных факторов среды их можно сгруппировать в три основных пути: активный, пассивный и избегание неблагоприятных воздействий. Все эти пути имеют место по отношению к любого экологическому фактору, будь то свет, тепло или влажность.

Активный путь – усиление сопротивляемости, развитие регуляторных способностей, дающих возможность пройти жизненный цикл и дать потомство, несмотря на отклонения условий среды от оптимальных. В большей степени этот путь свойствен гомойтермным организмам, но проявляется и у ряда высших растений (ускорение темпов нарастания-отмирания побегов, корней, быстрое цветение). Механизмы – преимущественно биохимические адаптации.

Пассивный путь – подчинение жизненных функций организма внешним условиям. Заключается в экономном использовании энергетических ресурсов при ухудшении условий жизни, повышении устойчивости клеток и тканей. Проявляется в снижении интенсивности обменных процессов, замедлении скорости роста и развития, летнем сбрасывании листьев, минимизации растений.… Наиболее выражен у растений и пойкилотермных животных, у млекопитающих и птиц – только у гетеротермных видов, обладающих способностью впадать в спячку.

Избегание неблагоприятных условий среды – характерно для всех живых существ. Прохождение жизненных циклов в наиболее благоприятное время года (активные процессы – в вегетационный сезон, зимой – состояние покоя). Для растений – защищенность почек возобновления и молодых тканей снежным покровом, подстилкой; отражение солнечных лучей.

Многие мелкие растения переносят низкие зимние температуры, зимуя под снегом, не имея никаких адаптивных черт в виде изменения органов или клеток. У некоторых из них адаптации проявляются не по отношению к температуре, а по отношению к защитному фактору.

ПРИМЕР – перезимовка мелких растений под слоем опада и снега; полегание с наступлением морозом ветвей кедрового стланика (Pinus pumila) на поверхность. Вторая очень интересная реакция стланика на холод. Она вызвана неравномерным развитием толщины годичных колец – более узких с нижней стороны побегов. По мере замерзания клеточного сока происходит преимущественное увеличение поверхности побега с той стороны, где кольца шире. Постепенно побег распрямляется и, принимая горизонтальное положение, ложится на землю. Весной происходит обратный процесс, но более быстрый. Аналогично, по-видимому, ведет себя и ольховник, имеющий такую же ЖФ, как и кедровый стланик.

Извилистость стволов каменных берез некоторыми исследователями тоже трактуется, как адаптация вида к холоду. «Извиваясь», ствол дерева еще какое-то время задерживается в более теплом приземном слое. Это имеет место, как на европейском Севере, так и на Севере Дальнего Востока. Следует отметить также неравномерность распускания листьев в кронах березы, и разрастание нижних ветвей, прижимающихся к поверхности и укрывающих корнеобитаемый слой.

Состояния покоя

Все растения и животные подготавливаются к зиме, при этом замедляются физиолого-биохимические процессы.

У растений прекращается рост. У древесных пород, впадающих в состояние покоя, интенсивность дыхания снижается до 1/200 – 1/400 от летнего. Органический покой характерен для плодов, клубней, почек (спящие почки). Они не прорастают, не распускаются до весны или до поры, пока не получат «сигнал» факторов среды, пока не произойдут биохимические реакции в эмбриональных клетках и тканях. Глубокий покой – наступает одновременно с органическим; степень глубины зависит от вида растений и условий осени; обеспечивает морозоустойчивость. Вынужденный покой – задержка весеннего развития из-за неблагоприятных условий.

У животных тоже несколько состояний покоя. Спячка – летняя – из-за высоких температур и дефицита воды, зимняя – из-за холода. Не всегда у млекопитающих во время зимнего сна замедляются обменные процессы – у бурых и белых медведей зимой рождаются детеныши. Анабиоз – состояние организма, при котором жизненные процессы настолько замирают, что признаки жизни отсутствуют. Организм обезвоживается и потому может переносить очень низкие температуры (до -271 °С), но при этом не происходит нарушения макромолекул в клетках. Анабиоз характерен для спор, семян, высохших лишайников, муравьев, простейших одноклеточных.

Диапауза – состояние временной пониженной физиологической активности – свойственна членистоногим. В этот период замедляются процессы обмена, повышается устойчивость к неблагприятным условиям среды. Различают зимнюю и летнюю (у дождевых червей, укольчатого шелкопряда, дубовой и ореховой павлиноглазки, листоедов) диапаузы. Может наступать на определенной стадии развития (куколки, гусеницы, яйца), длится от нескольких недель до года и часто не связана с ухудшением условий. У сумчатых может непредсказуемо задержаться развитие плода до наступления благоприятного сочетания факторов среды – ответная «спячка».

Поведенческие реакции . Все животные активно перемещаются в места с более благоприятными температурами (в жару – в тень, в холодные дни – на солнце или в укрытие), скучиваются или рассредоточиваются, во время спячки скручиваются клубком, выбирают или создают убежища с определенным климатом, проявляют активность в определенное время суток.

При понижении температуры переходят на питание более калорийной пищей (олени – лишайники, чозения; белки – семена хвойных). Для животных – разные формы поведения. В качестве примера можно привести смену стаций обитаний эктотермными видами (насекомые, членистоногие, пресмыкающиеся) в разных зонах (правило смены ярусов) и в разное время суток, эндотермными видами – обустройство жилищ, гнезд и смена места пребывания при резкой смене условий среды в течение суток, миграции при смене сезонов года.

Виды сходно реагируют на совокупность факторов, но нет видов и популяций, реагирующих на них совершенно одинаково. Может быть, они различаются по реакции всего на один фактор, и то незначительно, но и этого достаточно, чтобы занять в одном биоценозе разные местообитания – микросайты (пример ольховника и кедрового стланика). Особенно четко различия в экологических требованиях проявляются на границах ареалов, в экстремальных условиях произрастания. Этими различиями определяется избирательное отношение к заселяемым территориям и многовидовой характер сообществ. На разных почвах в разных климатических зонах формируются разные экосистемы. В свою очередь в них создаются неодинаковые условия для животных и микроорганизмов. Исторически приспосабливаясь к абиотическим факторам среды, вступая во взаимоотношения (биотические, трофические) друг с другом, растения, животные и микроорганизмы распределяются в пространстве по различным средам, формируя самые разнообразные экосистемы (биогеоценозы), в конечном итоге объединяющиеся в мегаэкосистему – биосферу Земли.

Читать лекцию 6


Возвратиться к СТАТЬЯМ СОТРУДНИКОВ БСИ ДВО РАН

Возвратиться НА ГЛАВНУЮ СТРАНИЦУ сайта Ботанического сада ДВО РАН


Переход на сайт "Наша ботаничка"